Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Coronaviruses ; 2(9) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2283828

ABSTRACT

Infection by beta-coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coron-avirus-2) alters the homeostasis of the vascular endothelium, promoting an inflammatory state which causes damage and favors the prothrombotic state. The direct viral cytotoxicity induced by the SARS-CoV-2 leads to endothelial cell death;thus, altering the vessel functions. Moreover, SARS-CoV infection induces endothelial dysfunction (ED) and reduces the levels of nitric oxide (NO);thus, aggravating the vascular injuries, which promotes thrombotic events due to an altera-tion in the homeostasis. NO is a pleiotropic molecule that induces vasodilation, regulates the immune response, inhibits platelet aggregation, and decreases the cellular adhesion to vascular en-dothelium. Moreover, NO acts directly against invasive agents, exhibiting antibacterial, antiviral, and antifungal activity. High levels of NO result in an increase in the ED, causing an inflammatory amplification that aggravates the disease through undesirable positive feedback. The objective of this review was to present and discuss the involvement of NO on ED in SARS-CoV-2 infections. This review may also highlight new perspectives for therapeutic interventions through the supple-mentation of exogenous NO. The maintenance of homeostatic NO levels could represent a useful approach in the prevention of coronavirus-induced ED.Copyright © 2021 Bentham Science Publishers.

2.
Comput Struct Biotechnol J ; 19: 1654-1660, 2021.
Article in English | MEDLINE | ID: covidwho-2261625

ABSTRACT

Susceptibility to severe illness from COVID-19 is anticipated to be associated with cigarette smoking as it aggravates the risk of cardiovascular and respiratory illness, including infections. This is particularly important with the advent of a new strain of coronaviruses, the severe acute respiratory syndrome coronavirus (SARS-CoV-2) that has led to the present pandemic, coronavirus disease 2019 (COVID-19). Although, the effects of smoking on COVID-19 are less described and controversial, we presume a link between smoking and COVID-19. Smoking has been shown to enhance the expression of the angiotensin-converting enzyme-2 (ACE-2) and transmembrane serine protease 2 (TMPRSS2) key entry genes utilized by SARS-CoV-2 to infect cells and induce a 'cytokine storm', which further increases the severity of COVID-19 clinical course. Nevertheless, the impact of smoking on ACE-2 and TMPRSS2 receptors expression remains paradoxical. Thus, further research is necessary to unravel the association between smoking and COVID-19 and to pursue the development of potential novel therapies that are able to constrain the morbidity and mortality provoked by this infectious disease. Herein we present a brief overview of the current knowledge on the correlation between smoking and the expression of SARS-CoV-2 key entry genes, clinical manifestations, and disease progression.

3.
J Mol Struct ; 1275: 134642, 2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2122710

ABSTRACT

COVID-19 is the most devastating disease in recent times affecting most people globally. The higher rate of transmissibility and mutations of SARS-CoV-2 along with the lack of potential therapeutics has made it a global crisis. Potential molecules from natural sources could be a fruitful remedy to combat COVID-19. This systematic review highlights the detailed therapeutic implication of naturally occurring glycyrrhizin and its related derivatives against COVID-19. Glycyrrhizin has already been established for blocking different biomolecular targets related to the SARS-CoV-2 replication cycle. In this article, several experimental and theoretical evidences of glycyrrhizin and related derivatives have been discussed in detail to evaluate their potential as a promising therapeutic strategy against COVID-19. Moreover, the implication of glycyrrhizin in traditional Chinese medicines for alleviating the symptoms of COVID-19 has been reviewed. The potential role of glycyrrhizin and related compounds in affecting various stages of the SARS-CoV-2 life cycle has also been discussed in detail. Derivatization of glycyrrhizin for designing potential lead compounds along with combination therapy with other anti-SARS-CoV-2 agents followed by extensive evaluation may assist in the formulation of novel anti-coronaviral therapy for better treatment to combat COVID-19.

4.
Food Chem X ; 14: 100302, 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1796842

ABSTRACT

Kombucha, originated in China 2000  years ago, is a sour and sweet-tasted drink, prepared traditionally through fermentation of black tea. During the fermentation of kombucha, consisting of mainly acidic compounds, microorganisms, and a tiny amount of alcohol, a biofilm called SCOBY forms. The bacteria in kombucha has been generally identified as Acetobacteraceae. Kombucha is a noteworthy source of B complex vitamins, polyphenols, and organic acids (mainly acetic acid). Nowadays, kombucha is tended to be prepared with some other plant species, which, therefore, lead to variations in its composition. Pre-clinical studies conducted on kombucha revealed that it has desired bioactivities such as antimicrobial, antioxidant, hepatoprotective, anti-hypercholestorelomic, anticancer, anti-inflammatory, etc. Only a few clinical studies have been also reported. In the current review, we aimed to overhaul pre-clinical bioactivities reported on kombucha as well as its brief compositional chemistry. The literature data indicate that kombucha has valuable biological effects on human health.

5.
Med Hypotheses ; 163: 110847, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1796319

ABSTRACT

Recent studies have reported an impaired exercise response at cardiopulmonary exercise testing (CPET) during convalescence from coronavirus disease 2019 (COVID-19). In detail, these previous reports suggest the presence of functional limitations in a consistent proportion of COVID-19 survivors, in the absence of relevant alterations of ventilatory and gas exchange parameters at CPET. Therefore, deconditioning has been proposed as the main mechanism of the reduced peak oxygen uptake in this clinical setting. This interpretation of the results is supported by the evidence that deconditioning is a recognized aspect of the post-intensive care syndrome, with acute sarcopenia being frequently observed among COVID-19 survivors. Here, we hypothesized the role of endothelial dysfunction as a key pathogenic mechanism of the functional limitations of COVID-19, including multisystem deconditioning and subsequent exercise intolerance.

6.
Mult Scler Relat Disord ; 59: 103557, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1730004

ABSTRACT

Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially with more severe neurological signs. This condition can become intolerable when these patients suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the mechanisms of hyperthermia in patients with MS, and they may encounter when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory role and relevant adaptation to regular physical exercise are summarized.


Subject(s)
COVID-19 , Multiple Sclerosis , Nervous System Diseases , Exercise , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/therapy , SARS-CoV-2
7.
World Allergy Organ J ; 14(1): 100499, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1223025

ABSTRACT

Indoor environments contribute significantly to total human exposure to air pollutants, as people spend most of their time indoors. Household air pollution (HAP) resulting from cooking with polluting ("dirty") fuels, which include coal, kerosene, and biomass (wood, charcoal, crop residues, and animal manure) is a global environmental health problem. Indoor pollutants are gases, particulates, toxins, and microorganisms among others, that can have an impact especially on the health of children and adults through a combination of different mechanisms on oxidative stress and gene activation, epigenetic, cellular, and immunological systems. Air pollution is a major risk factor and contributor to morbidity and mortality from major chronic diseases. Children are significantly affected by the impact of the environment due to biological immaturity, prenatal and postnatal lung development. Poor air quality has been related to an increased prevalence of clinical manifestations of allergic asthma and rhinitis. Health professionals should increase their role in managing the exposure of children and adults to air pollution with better methods of care, prevention, and collective action. Interventions to reduce household pollutants may promote health and can be achieved with education, community, and health professional involvement.

8.
Prog Polym Sci ; 118: 101410, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1221008

ABSTRACT

Coronavirus disease 2019 (COVID-19) is largely threatening global public health, social stability, and economy. Efforts of the scientific community are turning to this global crisis and should present future preventative measures. With recent trends in polymer science that use plasma to activate and enhance the functionalities of polymer surfaces by surface etching, surface grafting, coating and activation combined with recent advances in understanding polymer-virus interactions at the nanoscale, it is promising to employ advanced plasma processing for smart antiviral applications. This trend article highlights the innovative and emerging directions and approaches in plasma-based surface engineering to create antiviral polymers. After introducing the unique features of plasma processing of polymers, novel plasma strategies that can be applied to engineer polymers with antiviral properties are presented and critically evaluated. The challenges and future perspectives of exploiting the unique plasma-specific effects to engineer smart polymers with virus-capture, virus-detection, virus-repelling, and/or virus-inactivation functionalities for biomedical applications are analysed and discussed.

9.
JACC Basic Transl Sci ; 6(3): 202-218, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1101317

ABSTRACT

The authors hypothesized that the cytokine storm described in COVID-19 patients may lead to consistent cell-based tissue factor (TF)-mediated activation of coagulation, procoagulant microvesicles (MVs) release, and massive platelet activation. COVID-19 patients have higher levels of TF+ platelets, TF+ granulocytes, and TF+ MVs than healthy subjects and coronary artery disease patients. Plasma MV-associated thrombin generation is present in prophylactic anticoagulated patients. A sustained platelet activation in terms of P-selectin expression and platelet-leukocyte aggregate formation, and altered nitric oxide/prostacyclin synthesis are also observed. COVID-19 plasma, added to the blood of healthy subjects, induces platelet activation similar to that observed in vivo. This effect was blunted by pre-incubation with tocilizumab, aspirin, or a P2Y12 inhibitor.

10.
Phytomed Plus ; 1(3): 100043, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1087227

ABSTRACT

Background: Several recent studies have stated that glycyrrhizin and licorice extract are present in most traditional Chinese medicine formulas used against SARS-CoV-2 in China. Significant data are showing that glycyrrhizin and licorice extract have multiple beneficial activities in combating most features of SARS-CoV-2. Purpose: The aim of current review was to highlight recent progresses in research that showed the evidence of the potential use of glycyrrhizin and licorice extract against COVID-19. Methodology: We have reviewed the information published from 1979 to October 2020. These studies demonstrated the effects , use and safety of glycyrrhizin and icorice extract against viral infections,bacterial infections, inflammatory disorders of lung ( in vitro and in vivo).  These studies were collated through online electronic databases research (Academic libraries as PubMed, Scopus, Web of Science and Egyptian Knowledge Bank). Results: Pooled effect size of articles provides information about the rationale for using glycyrrhizin and licorice extract to treat COVID-19. Fifty studies demonstrate antiviral activity of glycyrrhizin and licorice extract. The most frequent mechanism of the antiviral activity is due to disrupting viral uptake into the host cells and disrupting the interaction between receptor- binding domain (RBD) of SARS-COV2 and ACE2 in recent articles. Fifty studies indicate that glycyrrhizin and licorice extract have significant antioxidant, anti-inflammatory and immunomodulatory effects. Twenty five studies provide evidence for the protective effect of glycyrrhizin and licorice extract against inflammation-induced acute lung injury and cardiovascular disorders. Conclusion: The current study showed several evidence regarding the beneficial effects of glycyrrhizin and licorice extract in combating COVID-19. More randomized clinical trials are needed to obtain a precise conclusion.

SELECTION OF CITATIONS
SEARCH DETAIL